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ABSTRACT
Fault detection is crucial to ensure the reliability of navigation systems. However, mainstream fault detection methods are
developed based on Gaussian noise assumptions, while other methods targeting non-Gaussian noises lack rigorous statistical
properties. The performance and reliability of these methods are challenged in real-world applications. This paper proposes a
fault detection method for linearized pseudorange-based positioning systems under non-Gaussian noises. Specifically, this paper
proposes a test statistic based on the jackknife technique, which is proved to be the linear combination of measurement noises
without any assumption about noise distribution. Furthermore, a hypothesis test with the Bonferroni correction is constructed
to detect potential faults in measurements. In a worldwide simulation, the proposed method demonstrates superior performance
than the multiple hypothesis solution separation (MHSS) method under non-Gaussian noises. The reliability of the proposed
method is further examined in detecting artificially injected faults for a differential global navigation satellite system (DGNSS)
positioning system. Moreover, a real-world application to detect satellite clock anomalies for a single point positioning (SPP)
system is investigated. The results show a significant improvement in reducing detection delay (8 minutes earlier than MHSS).

I. INTRODUCTION
Gaussian-based fault detection methods are not enough: Fault detection is essential for localization and navigation systems in
some safety-critical applications (Joerger & Pervan, 2016; Liu & Morton, 2022; Osechas et al., 2012; B. S. Pervan et al., 1998;
R. Wang et al., 2016), which is the technology to check the occurrence of faults in the system as well as to determine the time of
fault occurs (Gao et al., 2015). For pseudorange-based positioning systems, such as the single point positioning (SPP) and the
differential global navigation satellite system (DGNSS) positioning, the fundamental principle of fault detection is to identify
measurements that deviate from the system’s expected behavior, where abnormal measurements usually show a considerable
inconsistency with normal measurement (Hsu et al., 2017). Based on this principle, fault detection methods such as the range
comparison method (Lee, 1986), parity space (B. S. Pervan et al., 1996; Sturza, 1988), chi-squared test (Joerger & Pervan, 2013;
Walter & Enge, 1995), and solution separation (Blanch et al., 2010; Brown & McBurney, 1988), are developed and widely
applied in satellite-based navigation systems for fault detection and integrity monitoring purposes (Blanch et al., 2015; Joerger
et al., 2014). However, a common assumption has been made in developing these methods that the nominal measurement
error is Gaussian distributed. Indeed, this assumption brings several benefits and charming properties in constructing and
applying these fault detection methods, such as 1) uncorrelated Gaussian variables are independent, which is the foundation for
determining the theoretical threshold of the parity space (Sturza, 1988) and the chi-squared methods (Walter & Enge, 1995); 2)
the linear combination of Gaussian variables is still Gaussian distributed, which makes it much easy to project measurement
domain errors to position domain errors and thus favorite in integrity monitoring (Blanch et al., 2010). However, measurement
errors or noises in the real world usually have non-Gaussian properties. For example, the noise of global navigation satellite
system (GNSS) signals exhibits a strong non-Gaussian property, as exemplified in many studies (Braff & Shively, 2005; Niu
et al., 2014; B. Pervan et al., 2000; Rife, Pullen, & Pervan, 2004; Zhao et al., 2020). The unrealistic Gaussian assumptions
can result in increased false alarm rates and degraded fault detection rates in real-world applications, limiting the reliability and
effectiveness of preventing systems from faults.

Non-Gaussian fault detection methods are underexplored: A fundamental solution to the non-Gaussian problems is to incorpo-
rate non-Gaussian properties into the process of state estimation and fault detection. Although extensive methods have been
proposed for state estimation with non-Gaussian noises, such as robust estimation (Pfeifer et al., 2021; Sünderhauf et al., 2013;
Wen et al., 2021), particle filters (Gabela et al., 2021; Gupta et al., 2022; Ray et al., 2018), and adaptive error modeling
(Pfeifer & Protzel, 2019), little attention is given to fault detection problems with non-Gaussian noises. The early exploration
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of non-Gaussian fault detection methods can be roughly classified into two categories: the Gaussian sum filter (GSF) approach
and the particle filter (PF) approach. In the first category, Yun et al. (2008) use the Gaussian mixture model (GMM) to model
measurement noises and deploy several parallel Kalman filters to deal with each Gaussian component. The fault detection
process is realized by comparing the one-side tail probability of the GMM-distributed residual obtained from the GSF with a
threshold, which is heuristically obtained by constructing a Kalman filter based detector under Gaussian assumptions. J. Wang
et al. (2022) also develop a similar algorithm. The difference is that Wang’s approach sums up the residual of each Kalman filter
according to the mixture weight and subsequently takes the summation for a Chi-squared test. However, an assumption is made
yet not proved in J. Wang et al. (2022) that the weighted summed residual is non-central chi-square distributed. In the second
category, a common logic is applied in most of the studies. First, the measurement set is divided into several subsets within
which one measurement is excluded (similar to the concept of solution separation). Then, for the full measurement set and each
subset, a PF is applied to estimate the state and the likelihood of the predicted state. Finally, a cumulative log-likelihood ratio
(LLR) test is constructed by using the likelihood produced by each auxiliary PF and the main PF. Differences among PF-based
fault detection literature mainly lie in the determination of the threshold. Rosihan et al. (2006) set the threshold with an empirical
value; He et al. (2016) develop a heuristic approach based on the genetic algorithm to solve the near-optimal solution for the
threshold; E. Wang et al. (2018) conduct a simulation to determine the threshold. As can be seen, these early explorations of
non-Gaussian fault detection methods are either heuristic or lack rigorous statistical properties.

Connections to previous work and contribution in this paper: Previously (Yan, Wen, et al., 2024), we attempted to propose
a rigorous fault detection method by establishing a clear relationship between GMM-distributed noises and residuals in the
localization system through error propagation, based on which a simple test statistic is constructed for a Chi-squared test.
Although this method exemplifies the benefits of incorporating non-Gaussian noise modeling into fault detection methods,
it still makes certain assumptions about the distribution of the test statistic (i.e., approaches to a chi-squared distribution),
unavoidably compromising the rigor of its statistical properties. In this paper, the relationship between non-Gaussian noises
and the test statistic is further investigated. By introducing the jackknife technique, a cross-validation technique in statistics
(Quenouille, 1956; Tukey, 1958), this paper formalizes a rigorous hypothesis testing method to detect faulty measurements
in localization systems under non-Gaussian noises. The basic idea is to quantify the inconsistency between the observed
measurement and the predicted measurement based on subset solutions. Specifically, this paper

1. develops the standard jackknife test (JT) detector with the Bonferroni correction (Bonferroni, 1936) to detect faults in
linearized pseudorange-based positioning systems with Gaussian noises (Section II.2);

2. extends the JT detector to non-Gaussian noises by constructing a new test statistic and proving that the constructed test
statistic is the linear combination of measurement noises, providing a solid theoretical foundation for fault detection under
non-Gaussian noises (Section II.3);

3. in a worldwide simulation, demonstrates the equivalent performance between the JT detector and the multiple hypothesis
solution separation (MHSS) method (Blanch et al., 2010; Brown & McBurney, 1988) in detecting faulty measurements
for the dual-frequency SPP system under Gaussian noise setting (Section IV.1) and shows the superior performance of
the extended JT detector under non-Gaussian noise setting (Section IV.2);

4. applies the proposed method in a DGNSS positioning system to detect artificially injected faults, statistically showing its
improved detection rate compared to the MHSS method (Section V);

5. applies the proposed method in a single-frequency SPP system to detect real-world satellite clock anomalies, showing that
the proposed method can yield a significantly shorter detection delay and higher detection rate than the MHSS method
(Section VI).

This paper limits the scope to linearized pseudorange-based positioning systems, such as linearized SPP and DGNSS positioning
systems. In addition, faults in this paper refer to the unmodelled error in the system, such as satellite clock faults in SPP and
nonline-of-sight faults in DGNSS.

The contributions of this paper are two folds:

1. Propose the jackknife detector, which provides the theoretical foundation for detecting faults in linearized pseudorange-
based positioning systems under non-Gaussian noises;

2. Exemplifies the feasibility and outstanding performance of the jackknife detector through both simulated and real-world
experiments.

To the best of the author’s knowledge, this is the first work of fault detection for linearized pseudorange-based positioning
systems under non-Gaussian noises with rigorous statistical properties.
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II. JACKKNIFE TEST FOR LINEAR SYSTEM
1. Linearization of Pseudorange-based Positioning Systems
The GNSS pseudorange measurement model is a non-linear system, which can be formalized as follows (Misra & Enge, 2006):

ϱi =

√
(pix − x)

2
+

(
piy − y

)2
+ (piz − z)

2
+ cδr + ηi , (1)

where ϱi is the ith pseudorange measurement, pi =
[
pix, p

i
y, p

i
z

]T is the position of ith satellite, x, y, z are the receiver position
in the Earth-Centered, Earth-Fixed (ECEF) coordinate system, δr is the receiver clock bias from single satellite constellation,
c = 3× 108 m/s is the speed of light, and ηi is the measurement error.

In most GNSS positioning applications, such as SPP and DGNSS positioning, the pseudorange measurement model is linearized
by taking the first-order Taylor expansion at a certain linearized point x0. A generalized linear system for GNSS positioning
can be written as

y = H∆x+ ε , (2)
where

y =

f
(
ρ1,x0

)
...

f
(
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)
 ,H =

h
(
{p1,j},x0
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h
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 ,∆x=x− x0 , (3)

f
(
ρi,x0

)
is a function of ith measurement ρi (note that ρi refers to a generalized measurement, not limited to the pseudorange

measurement) and the linearized point x0; h
(
{pi,j},x0

)
is a vector function of the collection of satellite positions {pi,j} related

to ith measurement and x0; εi is the ith measurement error; and x is the receiver positioning state (an m × 1 vector). For the
SPP system, {pi,j} involves one satellite; for the DGNSS positioning system, {pi,j} involves two satellites. The exact form of
Equation (3) for SPP and DGNSS positioning systems is given in Appendix A. In the following, this paper utilizes this general
expression to develop the jackknife test for detecting faulty measurements in pseudorange-based positioning systems.

2. Standard Jackknife Test Detector under Gaussian Noises
In statistics, the jackknife is a cross-validation technique, initially developed by Quenouille (1949) and expended and named
by Tukey (1958). The basic idea of the jackknife technique is to systematically leave out each observation from a dataset
and calculate the parameter estimate over the remaining observations. Then, these calculations are aggregated for specific
statistical purposes (Quenouille, 1956; Tukey, 1958). This section shows how to derive the jackknife residual for linearized
pseudorange-based positioning systems and develop the hypothesis test to detect potential faults.

(1) Full set solution based on weighted least square

With n measurements, the estimated receiver positioning state x̂ can be solved by the weighted least square (WLS) method (in
an iterative approach) as follows:

∆x̂=Sy (4a)
x̂=x0 +∆x̂ , (4b)

where S is the weighted least square solution matrix for a full set of n measurements

S =
(
HTWH

)−1
HTW , (5)

and W is the weighting matrix and usually takes the inverse of the covariance matrix of ε.

(2) Subset solution based on weighted least square

The linearized pseudorange-based positioning system for the ith subset (i.e., with the ith measurement excluded) can be written
by

y(i,∗) = H(i,∗)∆x(i) + ε(i,∗) (6)
where y(i,∗), ε(i,∗), ∆x(i) and H(i,∗) have the same meaning as that in (2) but are defined on the ith subset. Note that y(i,∗)

and ε(i,∗) are n× 1 vectors, ∆x(i) is an m× 1 vector, and H(i,∗) is a (n− 1)× 4 matrix. Define the m× (n− 1) matrix S(i,∗)

as the solution matrix on the ith subset

S(i,∗) =
(
H(i,∗)TW(i,∗)H(i,∗)

)−1

H(i,∗)TW(i,∗) , (7)
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where W(i,∗) is the weight matrix of size of (n− 1)× (n− 1). Alternatively, S(i) can be constructed so that it operates on the
full of measurements by extending S(i,∗) with an ith zeroed column,

S(i) =
[
S
(i,∗)
:,1:i−1 0 S

(i,∗)
:,i:n−1

]
, (8)

where S
(i,∗)
:,1:i−1 is the first i − 1 columns of S(i,∗) and S

(i,∗)
:,i:n−1 is the remaining columns of S(i,∗). Then, the subsolutions are

given by

∆x̂(i)=S(i)y(i) ∀i = 1 · · ·n (9a)

x̂(i)=x
(i)
0 +∆x̂(i) ∀i = 1 · · ·n , (9b)

where x
(i)
0 is the linearized point of the subsolution, and y(i) is the measurement vector of the subsolution. Note that y(i) is

also a n× 1 vector, but y(i) and y are different. As shown in Equation (3), y(i) and y are the function of the raw measurement
and the linearized point. Since y(i) and y have different linearized points, their values are consequently different.

(3) Construction of Jackknife residual

The predicted ith measurement with the subsolution ∆x̂(i) is given by

ŷi=gi∆x̂(i) (10a)

gi=h
(
{pi,j},x(i)

0

)
, (10b)

where h is defined in Section II.1. The Jackknife residual is given by the difference between yi and ŷi

ti = yi − ŷi , (11)

where
yi = f(ρi,x

(i)
0 ) . (12)

(4) Distribution of Jackknife residual under Gaussian noises

Based on the subsolution ∆x̂(i), the linearized measurement model related to yi can be written by

yi = gi∆x(i) + εi . (13)

Then
ti=

(
gi∆x(i) + εi

)
− gi∆x̂(i)

=gi

(
∆x(i) −∆x̂(i)

)
+ εi .

(14)

Assume εi has a zero-mean Gaussian distribution

εi ∼ N
(
0, σ2

i

)
∀i = 1 · · ·n . (15)

The distribution of ti is given by (a proof is provided in Appendix B)

ti ∼ N
(
0,giS

(i)W−1S(i)T gT
i + σ2

i

)
. (16)

(5) Jackknife test for fault detection

Formalize the following hypotheses:

H
(i)
0 : No failure in the ith measurement

H
(i)
1 : A failure exists in the ith measurement .

(17)
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Origin test: H
(i)
0 is rejected if |ti| >

(
giS

(i)W−1S(i)T gT
i + σ2

i

) 1
2

Q−1(α2 ) at significant level of α, where Q−1(·) is the
quantile function of a standard normal variable. The probability of type I error (false alarm) of the origin test is α.

In practice, the above test will be conducted for each subsolution to detect the potential failure in measurements, which evolves
into a multiple-testing problem. In such a case, the type I error is actually enlarged. Thus, the following hypotheses are
formalized instead, which are known as the Bonferroni correction (Bonferroni, 1936):

H0: No failure in the n measurements
H1: At least one failure exists in the n measurements .

(18)

Corrected test: H0 is rejected if |ti| >
(
giS

(i)W−1S(i)T gT
i + σ2

i

) 1
2

Q−1( α
2n ) at significant level of α∗. The probability of

type I error (false alarm) of the corrected test is α∗.

In implementing the corrected test, an upper limit τ (e.g., 0.05) will be set for α∗. Then the type I error α of the individual test
would be τ

n (as shown in Appendix C), which could be very small when n takes a large value. Therefore, the individual test and
the corrected test both could be conservative. However, in satellite navigation applications, it is rare to a large n, which ensures
the feasibility of the corrected test.

(6) Notes on multiple hypothesis solution separation

The separation of the vertical position between the full solution and the ith subsolution is given by (Blanch et al., 2010; Brenner,
1996)

di=x̂v − x̂(i)
v

=x0,v − x
(i)
0,v +∆x̂v −∆x̂(i)

v ,
(19)

where the subscript v represents the vertical component of the positioning solution. Assuming that εi takes the same form in
Equation (15), di will have a Gaussian distribution

di ∼ N
(
0,
(
s3 − s

(i)
3

)
W−1

(
s3 − s

(i)
3

)T)
, (20)

where s3 and s
(i)
3 are the 3rd row (the vertical axis) of S and S(i), respectively. For single fault detection, the corrected test in

Equation (18) can also be applied for multiple hypothesis solution separation (MHSS), and the threshold is determined based
on the distribution of di. Applications can be found in (Blanch et al., 2010, 2015; Brenner, 1996).

3. Extend Jackknife Test Detector to Non-Gaussian Noises
The predicted measurement vector ŷ(i) based on the subsolution ∆x̂(i) is given by

ŷ(i,∗) = H(i,∗)∆x̂(i) , (21)

where ŷ(i,∗) is a (n− 1)× 1 column vector and H(i,∗) is a (n− 1)×m matrix. Construct ỹ(i) and H̃(i) as following,

ỹ(i) =

ŷ(i,∗)
1:i−1,:

ŷi
ŷ
(i,∗)
i:n−1,:

 , H̃(i) =

H(i,∗)
1:i−1,:

gi

H
(i,∗)
i:n−1,:

 , (22)

where ŷ
(i,∗)
1:i−1,: is the first i − 1 rows of ŷ(i,∗) and ŷ

(i,∗)
i:n−1,: is the remaining rows of ŷ(i,∗). A similar definition is given for

H
(i,∗)
1:i−1,: and H

(i,∗)
i:n−1,:. The measurement residual is

y(i) − ỹ(i)=y(i) − H̃(i)∆x̂(i)

=
(
I− P̃

)
y(i) ,

(23)

where
P̃ = H̃(i)S(i) . (24)
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According to Equations (2) and (6), y(i) can be re-written by

y(i) = H̃(i)∆x(i) + ε , (25)

where ε is the measurement noise vector with arbitrary distributions. Then, Equation (23) can be written by

y(i) − ỹ(i) =
(
I− P̃

)
H̃(i)∆x(i) +

(
I− P̃

)
ε . (26)

It is proved in Appendix D that (
I− P̃

)
H̃(i) = 0 . (27)

Therefore,
y(i) − ỹ(i) =

(
I− P̃

)
ε . (28)

Define p̃i as the ith row of
(
I− P̃

)
, then the Jackknife residual is given by

ti = p̃iε . (29)

Equation (29) can be rewritten as the linear combination of measurement noises as follows:

ti =

n∑
j=1

p̃i,jεj , (30)

where p̃i,j is the jth element of p̃i. Remarkably, εj can have an arbitrary distribution as long as it has a probability density
function (PDF) fεj (·). Then, the PDF of ti can be derived as (a proof is given in Appendix E)

fti(x) =

n∏
j=1

|p̃i,j |−1
fε1

(
x

|p̃i,1|

)
∗ fε2

(
x

|p̃i,2|

)
∗ . . . ∗ fεn

(
x

|p̃i,n|

)
, (31)

where ∗ denotes the convolution operation. Since the distribution of ti is known, the jackknife test illustrated in Section II.2 can
be applied under both Gaussian and non-Gaussian noises. Moreover, it is proved in Appendix B that the construction process
of the Jackknife residual in this section is equivalent to that in Section II.2 under Gaussian noise settings.

III. OVERBOUNDING NON-GAUSSIAN NOISES
To characterize and simplify the error profile of measurements in the above pseudorange-based positioning systems, the concept
of overbound is proposed and widely studied in the navigation communities (Braff & Shively, 2005; Larson et al., 2019;
Shively, 2001). Overbound represents the worst possible error distribution in the absence of a hardware fault (DeCleene, 2000;
Rife, Pullen, & Pervan, 2004). Researchers have proposed various Gaussian, semi-Gaussian, and non-Gaussian overbounding
methods. A review of these methods can refer to Rife and Pervan (2012). This section will introduce two practical overbounding
methods, including the Gaussian overbound DeCleene (2000) and the Principal Gaussian overbound (Yan, Zhong, & Hsu, 2024).
The latter one is a non-Gaussian overbounding method. Both methods will be used for bounding zero-mean non-Gaussian
measurement error in Sections IV-VI.

1. Gaussian overbound
Let the CDF of the random variable v be Gv . The Gaussian overbound is determined by finding the minimum δ that satisfies∫ x

−∞
fN (x; 0, δ)dx≥Gv(x) ∀x < 0 (32a)∫ x

−∞
fN (x; 0, δ)dx≤Gv(x) ∀x ≥ 0 , (32b)

where fN (x; 0, σ) is the PDF of a zero-mean Gaussian distribution with a standard deviation of σ.
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2. Principal Gaussian overbound
The Principal Gaussian overbound (Yan, Zhong, & Hsu, 2024) utilizes the zero-mean bimodal Gaussian mixture model
(BGMM) to fit the error distribution based on the expectation–maximization (EM) algorithm (Dempster et al., 1977) and
divides the BGMM into the core and tail regions based on the analysis of BGMM membership weight. Within each region,
one of the Gaussian components in the BGMM holds a dominant position, and a CDF overbound is constructed based on the
dominant Gaussian component. The PDF of the Principal Gaussian overbound (PGO) is given by

fPGO(x) =

{
(1 + k) (1− p1) fN

(
x; 0, δ22

)
|x| > xrp

p1fN
(
x; 0, δ21

)
+ c |x| ≤ xrp

, (33)

where fN
(
x; 0, δ21

)
and fN

(
x; 0, δ22

)
are the PDF of the first and the second Gaussian component of the fitted BGMM, δ1

and δ2 are the corresponding standard deviations, and p1 and 1 − p1 are the mixing weight of the two Gaussian components,
respectively; k, c, and xrp are parameters uniquely determined by the partition strategy based on the analysis of BGMM
membership weight, as shown in Appendix F. The variance of PGO can be calculated by

Var(x) =

∫ ∞

−∞
x2fPGO(x)dx . (34)

A detailed description of PGO can refer to Yan, Zhong, and Hsu (2024) and is also presented in Appendix F. Soon, it will be
shown in Sections IV-VI that PGO provides a sharper yet conservative overbound than the Gaussian overbound for heavy-tailed
error distribution. Notably, it is proved that PGO can maintain the overbounding property through convolution (Yan, Zhong,
& Hsu, 2024), which is the basis for deriving pseudorange-level requirements from the position domain integrity requirements
(DeCleene, 2000).

IV. DETECTION PERFORMANCE WITH WORLDWIDE SIMULATIONS
This section shows the single-failure detection results of a set of users distributed over the world during one day. MAAST
(Jan et al., 2001), a MATLAB toolset developed at Stanford University, is utilized to simulate the dual frequency pseudorange
measurements, satellite positions, and user locations. Specifically, the 27-satellite Galileo constellation (Zandbergen et al.,
2004) is used to simulate satellite positions. The users are placed on a grid every 10 degrees longitude and latitude (which
gives 648 locations). For each location, the geometries are simulated every 5 min (which gives 288 time steps). Two types
of measurement noises for dual frequency pseudorange measurements are simulated, including the Gaussian distribution and
the Normal Inverse Gaussian (NIG) distribution. The dual pseudorange frequency measurements are then simulated by adding
the randomly generated sample from the given error distribution to the true range. The measurement model is given by dual-
frequency SPP, as shown in Appendix A.1. For each time and user location, an artificial bias (10m) is injected into one of the
measurements, and the detection rate is defined as

Pdec =
Detected epochs in one day

Valid epochs in one day
, (35)

where the nominator could be less than 288 since the number of satellites in view may not satisfy the minimum requirements
for fault detection (for SPP, the minimum number is 5).

1. Simulation with Gaussian Distributed Measurement Errors
The measurement error εi is given by

εi ∼ N (0, σ2
i ) , (36)

where
σ2
i =

(
σL1-L5
eph&clk,i

)2

+ σ2
trop,i +

( γ

γ − 1

)2(
σL1
cnmp,i

)2

+
( 1

γ − 1

)2(
σL5
cnmp,i

)2

, γ =
(fL1

fL5

)2

, (37)

σL1-L5
eph&clk,i,σtrop,i, σL1

cnmp,i, σL5
cnmp,i are the standard deviation of the satellite clock and ephemeris error for the L1-L5 ionospheric

free combination, tropospheric delay and L1 and L5 code noise and multipath errors, respectively; and fL1 and fL5 are the L1
and L5 frequencies, respectively. The configuration of these error terms is described in Appendix G.

The standard jackknife test (JT) detector in Equations (11)-(16) and the multiple hypothesis solution separation (MHSS) detector
in Equations (19)-(20) are deployed to detect the faults for each time and user location. The weighting matrix W used in the
two detectors takes the same value, which is the inverse of the covariance matrix of the measurement error. Figure 1 shows the
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detection rate contour of the two detectors. As can be seen, the JT detector demonstrates identical performance as the MHSS
detector, where both detectors show more than 99.5% detection rate at most user locations.
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Figure 1: Detection performance of (a) the MHSS and (b) the JT detectors with artificially injected bias (10m) under Gaussian distributed
measurement errors.

Figure 2: The flowchart of the fault detection process in the MHSS and the JT detectors. The empirical measurement error model is obtained
from either simulation or the collected data in reference stations. Since the empirical measurement error distribution could be arbitrary,
overbounding methods are employed to obtain the simplified nominal error model for fault detection purposes. The Gaussian overbound is
employed for the MHSS detector, while the Principal Gaussian overbound is employed for the JT detector.

2. Simulation with NIG Distributed Measurement Errors
The NIG distribution is found to be useful in approximating the heavy tails of the ground-station error distribution for LAAS
(Braff & Shively, 2005; Rife, Pullen, & Pervan, 2004), and its PDF is given by

fNIG(x) =
δ20 exp (δ

2
0)

π
√
x2 + δ20

K1

(
δ0

√
x2 + δ20

)
, (38)

where δ0 is the shape parameter that determines the weight of the NIG tail, and K1 is a modified Bessel function of the second
kind, degree one. Similar to the setting in Braff and Shively (2005), δ0 = 0.65 is adopted to simulate the measurement error
εi. Note that the error distribution for each measurement is set to be identical, which is different from the Gaussian case in
IV.1. The primary reason for this simplification is that, to the best of the authors’ knowledge, there is no developed method
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for establishing the geometry-related NIG error model. Since the simplification is applied for both detectors, its impact on the
conclusion drawn from the subsequent experimental results is expected to be negligible.

The nominal measurement error is obtained by bounding the NIG distributed measurement error and used in fault detection
algorithms. The MHSS and the extended JT detectors adopt different overbounding methods, as shown in Figure 2. Specifically,
the Gaussian overbound (DeCleene, 2000) introduced in III.1 is employed to bound the NIG distributed measurement error,
where the variance of Gaussian overbound is used for constructing the weighting matrix WMHSS (a diagonal matrix) in the
MHSS detector. For the extended JT detector in Equations (29)-(31), which is capable of handling non-Gaussian conditions,
the Principal Gaussian overbound (PGO) illustrated in III.2 is adopted instead. The weighting matrix WJT for the extended JT
detector is also a diagonal matrix, with each diagonal element taking the inverse of the variance of PGO, as shown in Equation
(34). Figure 3 plots the Gaussian overbound and the PGO of the NIG distribution (δ0 = 0.65). As can be seen, PGO provides a
sharper bound for the NIG distribution at both the tail and core regions than the Gaussian overbound.
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Figure 3: The (a) PDF and (b) CDF (plotted in logarithmic scale) of the Gaussian overbound and Principal Gaussian overbound for the NIG
distribution (δ0 = 0.65).
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Figure 4: Detection performance of (a) the MHSS and (b) the JT detectors with artificially injected bias (10m) under NIG distributed
measurement errors.

Figure 4 shows the contour plot of the detection rate for both detectors, revealing a noticeable disparity. The JT detector exhibits
a substantial enhancement in detection rate when compared to the MHSS detector. In most user locations, the JT detector
achieves a detection rate of over 95%. Moreover, in a considerable number of user locations, the detection rate even surpasses
99.5%. However, the MHSS detector exhibits a detection rate of 85% at nearly half of the locations. The superiority of the
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JT detector can be primarily attributed to two factors: 1) a sharper overbound for non-Gaussian measurement error and 2) the
accommodation of the jackknife test for non-Gaussian noises. On the one hand, the sharper overbound provided by PGO can
better characterize the measurement error distribution than the Gaussian overbound, as shown in Figure 3, providing an accurate
probabilistic model for hypothesis testing. It is known that an inaccurate probabilistic model can hinder the performance of
hypothesis testing, such as inflating the type I error (false alarm) or type II error (miss detection), and even make the testing
invalid. On the other hand, the theoretical underpinnings of the jackknife test provide a solid basis for its application in fault
detection with non-Gaussian noises (or say, non-Gaussian overbounds). The threshold for the JT detector is derived through
rigorous mathematical derivations rather than relying on simulation techniques. These two factors complement each other,
resulting in the exceptional performance of the JT detector.

V. DETECTION PERFORMANCE FOR CORS DGNSS POSITIONING
The analysis conducted in IV.2 primarily relies on simulated data, targeting a specific non-Gaussian measurement error model
known as NIG. To showcase the practical applicability of the JT detector, this section focuses on evaluating its performance
in the context of a DGNSS positioning with data collected from two Continuously Operating Reference Stations (CORS) in
Minneapolis. A brief introduction to DGNSS error and positioning is presented in Appendix A.2.

1. Data Prepossessing and Overbounding
This section utilizes reference station data from the CORS website, operated by the National Geodetic Survey (NGS). Specifically,
data is collected from stations MNAV and ZMP1, which are approximately 11.5 kilometers apart. The positions of the two
reference stations are obtained from the RINEX file header, and the satellite position is calculated based on the broadcast
ephemeris from NASA’s Archive of Space Geodesy Data website (NASA, n.d.) by utilizing RTKLIB (Takasu & Yasuda, 2009).
For each double-differenced pseudorange in Equation (49), the satellite with the highest elevation angle at that specific time
epoch is assigned as the master satellite. The research encompasses data from January 1st, 2020, to January 31st, 2020, with a
focus solely on GPS data. Since GPS data are strongly influenced by the elevation angle, the collected data are organized into
bins based on elevation angles (particularly refer to the elevation angle between the user receiver and the slave satellite) every
5◦ from 15◦ to 80◦, encompassing the highest observed elevation angle in the dataset.

Figure 5: The CDF (plotted in logarithm scale) of the Gaussian overbound and Principal Gaussian overbound for DGNSS errors in each
elevation angle bin.

Within each bin, the Gaussian overbound and the PGO for DGNSS errors are computed and plotted in Figure 5. In low elevation
angle bins (15◦ to 35◦), the PGO yields a significantly sharper bound than the Gaussian overbound. As discussed in (Yan,
Zhong, & Hsu, 2024), DGNSS error in low elevation angles has heavy tails, which is the main target of the PGO, thereby the
PGO exhibits better performance than the Gaussian overbound. In middle elevation angle bins (35◦ to 65◦), the PGO has a
slight superiority in bounding DGNSS errors to the Gaussian overbound, while the bounding performance of the two methods
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is nearly the same in high elevation angle bins ( > 65◦). Similar results are found in the complementary cumulative distribution
function (CCDF) plot of the Gaussian overbound and the PGO for DGNSS errors, which are presented in the Appendix H.

2. Detection Performance with Artificially Injected Bias
Within each elevation angle bin, the variance of the overbounding distribution is calculated and is taken as the variance of
measurement errors for all DGNSS measurements whose elevation angle falls in the bin. Similar to Section IV.2 (as suggested
in Figure 2), PGO is used to calculate the variance and is taken as the nominal error model in the JT detector, while the
Gaussian overbound is utilized in the MHSS detector. For example, in constructing the JT detector, the DGNSS measurements
with elevation angles ranging from 30◦ to 35◦ have the same variance of measurement errors, which is the variance of PGO
within that bin. Indeed, this simplification unavoidably hinders the accuracy of error modeling. A more rigorous way is to
characterize the error profile for each discrete elevation angle (could be an infinite number of discrete values); however, such
the characterization process is impractical with limited data and is out of the scope of our research.

The detecting performance of the JT detector and the MHSS detector is examined on data collected on January 1st, 2020. The
GPS pseudorange data are retrieved every 30 seconds, resulting in 2,880 epochs in total. At each epoch, an artificial bias is
injected into one of the measurements. Ten experiments are performed individually, each involving the injection of bias with a
specific magnitude. The detection rates of both detectors are tabulated in Table 1. For all ten cases, the JT detector significantly
outperforms the MHSS detector in terms of detection rate. When the injected bias falls within the range of 3m to 6m, the
detection rate of the JT detector is over 13% higher than that of the MHSS detector, demonstrating the superior of the JT
detector in detecting small faults. Remarkably, when the injected bias is set at 4m, the JT detector achieves the detection rate
of 60.92%, surpassing that of the MHSS detector by 20.13%. When the magnitude of the injected bias continues to increase,
both detectors yield satisfactory detection performance; however, the JT detector still performs better than the MHSS detector.

Table 1: The detection rate of the JT and the MHSS detectors on the CORS DGNSS data with different magnitudes of the injected bias.

Inject bias MHSS1 JT2 Improvement Inject bias MHSS JT Improvement
1m 0.31% 2.30 % 1.99% 6m 71.93% 84.95 % 13.03%

2m 3.31% 12.68 % 9.37% 7m 81.71% 92.51 % 10.80%

3m 18.57% 37.76 % 19.19% 8m 89.62% 96.55 % 6.93%

4m 40.79% 60.92 % 20.13% 9m 94.74% 98.71 % 3.97%

5m 59.42% 74.57 % 15.15% 10m 96.90% 99.48 % 2.58%

1 “MHSS” is short for “multiple hypothesis solution separation”
2 “JT” is short for “jackknife test”

VI. APPLICATION TO REAL-WORLD SATELLITE CLOCK ANOMALY DETETION
This section applies the proposed method to real-world satellite clock anomaly detection in the context of single point positioning
(SPP). A brief introduction to SPP is given in Appendix A.1. GPS PRN-1 experienced a clock anomaly on January 28th, 2023,
where the anomaly began at GPS time 15:02:30 and was set unhealthy at 16:05:00 (Lai et al., 2023). The clock anomaly
began to be corrected by manual control at 18:00, and the correction was completed at 20:00:00. The anomaly happened
when PRN-1 was over in the middle of South Pacific, so the data collected from the nearby station, CHTI, located in Chatham
Island, New Zealand, are used for analysis. Specifically, the observation data at CHTI from January 1st, 2023, to January 31st,
2023 are collected from the CORS website. The same method used in V.1 is applied to determine the position of CHTI and
satellites and to overbound the pseudorange measurement error (only L1 measurements are studied, and faulty measurements
are pre-excluded). Notably, the pseudorange measurement is corrected by clock bias correction, ionospheric corrections, and
tropospheric corrections based on RTKLIB (Takasu & Yasuda, 2009) with the broadcast ephemeris from NASA’s Archive of
Space Geodesy Data website (NASA, n.d.). The PGO and Gaussian overbounding results are listed in Appendix I.

Figure 6 shows the detection states of the MHSS and JT detectors at the CHTI station on January 28th. Similar to Section
IV.2 (as suggested in Figure 2), PGO is used to construct the nominal error model in the JT detector while the Gaussian
overbound is adopted for the MHSS detector. PRN-1 is visible for CHTI in two time periods, i.e., 05:44:30∼08:13:30 and
14:08:30∼18:23:00, as marked by the green shade area in Figure 6. In addition, the fault period 15:02:30∼20:00:00 is marked
by the red shade area. As can be seen, the JT detector can detect the anomaly at most times of the fault period, while the
MHSS detector occasionally declares faults during that period. Remarkably, the JT detector claims the fault at 15:03:00, merely
30 seconds after the anomaly happened, which is 8 minutes earlier than the MHSS detector. Since the sampling rate of the
observation data retrieved from the CORS website is 30 seconds, the minimum delayed time of detection for the JT detector is
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(a)

(b)

Figure 6: Detection states of (a) the MHSS and (b) the JT detectors at the CHTI station on January 28th, 2023. The detection state of ”1”
refers to ”a fault is claimed” while ”0” refers to ”not failure is claimed”.

limited to 30 seconds. With higher frequency observation data, the JT detector could yield a smaller delayed time of detection.

It is worth noting that a considerably long period of miss detection exists when using the JT detector for anomaly detection (not
to mention the case of the MHSS detector). The miss-detection period began at 17:03:30 and lasted until 18:02:30, during which
the JT detector occasionally claims faults. The primary reason can be attributed to the inaccuracy of the nominal error model.
Since only one-month data is used to model the pseudorange measurement error and compute the overbounds, the nominal error
model could be conservative and can even shield small faults. Therefore, the detection performance of the JT detector could be
degraded. Nevertheless, the JT detector still shows significantly better performance than the MHSS detector.

VII. CONCLUSIONS AND FUTURE WORK
This paper proposes a fault detection method with rigorous derivations for linearized pseudorange-based positioning systems
under non-Gaussian noises. This paper contributes to the literature mainly in two aspects. First, this paper develops the
jackknife test (JT) detector by constructing a test statistic with rigorous statistic properties, providing the theoretical basis to
detect faulty measurements in linearized pseudorange-based positioning systems under non-Gaussian noises. Second, this paper
demonstrates the outstanding performance of the JT detector on fault detection tasks in the single-frequency SPP, dual-frequency
SPP, and DGNSS positioning systems, respectively, through both simulated and real-world experiments, which exemplifies the
feasibility and wide adaptability of the proposed method.

This work provides the theoretical foundation for detecting faults in linearized pseudorange-based positioning systems under
non-Gaussian noises. This, indeed, provides the necessary theoretical basis to develop multi-hypothesis integrity monitoring
algorithms. Since the jackknife test statistic is developed in the measurement domain, efforts are anticipated to establish the
relationship between the jackknife test statistic and the integrity of positioning solutions, which will be the main focus of our
future work. In addition, the proposed method is designed for single-fault detection. For multiple-fault detection and integrity
monitoring under non-Gaussian noises, a possible solution could be examining the most influential measurements with multiple
jackknife tests, which also remain for further exploration.
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APPENDIX A. LINEARIZATION FOR SPP AND DGNSS POSITIONING SYSTEMS
1. Single Point Positioning (SPP)
The right-hand side (RHS) of the pseudorange measurement model in Equation (1) can be linearized by taking the first-order
Taylor expansion at x0 = [x0, y0, z0, δ0]

T as follows:

ϱi=ϱi,0 − ai,1 (x− x0)− ai,2 (y − y0)− ai,3 (z − z0)

+c(δr − δ0) + ηi ,
(39)

where

ϱi,0=

√
(pix − x0)

2
+

(
piy − y0

)2
+ (piz − z0)

2
+ cδ0 (40a)
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2
+
(
piy − y0

)2
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2
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(40c)
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(pix − x0)
2
+
(
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)2
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2
. (40d)

The matrix form of the linearized pseudorange measurement model with n measurements can be written as

y = H∆x+ ε , (41)

where

y =

ϱ1,0 − ϱ1
...

ϱn,0 − ϱn

 ,H =

a1,1 a1,2 a1,3 1
...

...
...

...
an,1 an,2 an,3 1

 , ε =

η1...
ηn

 ,∆x =

 x− x0

y − y0
z − z0

−c (δr − δ0)

 . (42)

For single-frequency receivers (such as L1 or L5), the measurement error ηi mainly includes the satellite clock and ephemeris
error ϵeph&clk,i, ionospheric delay ϵiono,i, tropospheric delay ϵtrop,i and code noise and multipath error ϵcnmp,i:

ηi = ϵeph&clk,i + ϵiono,i + ϵtrop,i + ϵcnmp,i . (43)

For double frequency receivers (e.g., L1-L5), the ionospheric delay can be eliminated by differencing pseudorange measurements
on both frequencies as follows (Blanch et al., 2023; Misra & Enge, 2006),:

ϱiono-free =
γϱL1 − ϱL5

γ − 1
(44a)

γ =

(
fL1

fL5

)2

, (44b)

where ϱiono-free represents the ionospheric-free pseudorange, fL1 and fL5 represents the L1 and L5 frequencies, respectively.
Then, the measurement error can be represented by (Blanch et al., 2023)

ηi = ϵL1-L5
eph&clk,i + ϵtrop,i +

γ

γ − 1
ϵL1
cnmp,i −

1

γ − 1
ϵL5
cnmp,i , (45)

where ϵL1-L5
eph&clk,i is the satellite clock and ephemeris error for the L1-L5 ionospheric free combination. With the definition in

Equations (44) and (45), the linearized pseudorange measurement model for the dual frequency SPP takes a similar form as in
Equations (41) and (42).
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2. Differential Global Navigation Satellite System (DGNSS) Positioning
Equation (1) can be rewritten to represent the relationship between the receiver r1 and the satellite s as follows:

ϱsr1 = ∥ps − xr1∥+ cδr1 + ϵseph&clk,r1 + ϵsiono,r1 + ϵstrop,r1 + ϵscnmp,r1 . (46)

By taking the difference between the pseudoranges of receivers r1 and r2, the single-differenced pseudorange ∇ϱsr1,r2 is given
by

∇ϱsr1,r2 = (∥ps − xr1∥ − ∥ps − xr2∥) + c (δr1 − δr2) + ϵscnmp,r1 − ϵscnmp,r2 . (47)
The common errors due to the satellite s are eliminated in the single difference. Similarly, for the measurements from satellite i,

∇ϱir1,r2 =
(∥∥pi − xr1

∥∥−
∥∥pi − xr2

∥∥)+ c (δr1 − δr2) + ϵicnmp,r1 − ϵicnmp,r2 . (48)

Then the double-differenced pseudorange is given by

∇∆ϱs,ir1,r2=(∥ps − xr1∥ − ∥ps − xr2∥)−
(∥∥pi − xr1

∥∥−
∥∥pi − xr2

∥∥)+ ϵs,ir1,r2 (49a)
ϵs,ir1,r2=ϵscnmp,r1 − ϵscnmp,r2 − ϵicnmp,r1 + ϵicnmp,r2 , (49b)

where ϵs,ir1,r2 is the remaining error after double differencing and is called the DGNSS error.

Assuming that xr2 is known and x = xr1 = [x, y, z]
T is the position to be estimated, the right-hand side (RHS) of (49a) can

be linearized by taking the first-order Taylor expansion at x0 = [x0, y0, z0]
T as follows:

∇∆ϱs,ir1,r2 = ∇∆ϱ̂s,ir1,r2 − ei,1 (x− x0)− ei,2 (y − y0)− ei,3 (z − z0) + ϵs,ir1,r2 , (50)
where

∇∆ϱ̂s,ir1,r2=(∥ps − x0∥ − ∥ps − xr2∥)−
(∥∥pi − x0

∥∥−
∥∥pi − xr2

∥∥) (51a)

ei,1=
psx − x0

∥ps − x0∥
− pix − x0

∥pi − x0∥
(51b)

ei,2=
psy − y0

∥ps − x0∥
−

piy − y0

∥pi − x0∥
(51c)

ei,3=
psz − z0

∥ps − x0∥
− piz − z0

∥pi − x0∥
. (51d)

The matrix form of the linearized double-differenced pseudorange measurement model with n measurements can be written as

y = H∆x+ ε , (52)

where

y =

∇∆ϱ̂s,1r1,r2 −∇∆ϱs,1r1,r2
...

∇∆ϱ̂s,nr1,r2 −∇∆ϱs,nr1,r2

 ,H =

e1,1 e1,2 e1,3
...

...
...

en,1 en,2 en,3

 , ε =

ϵ
s,1
r1,r2

...
ϵs,nr1,r2

 ,∆x =

[
x− x0

y − y0
z − z0

]
. (53)

APPENDIX B. DISTRIBUTION OF JACKKNIFE RESIDUAL UNDER GAUSSIAN NOISES
The Gauss-Markov conditions concern the set of noises in the linear system y = H∆x+ ε as follows:

1. Zero mean: E[εi] = 0 ∀i;
2. Homoscedastic: Var[εi] = σ2 < ∞ ∀i;
3. Uncorrelated: Cov[εi, εj ] = 0 ∀i ̸= j.

Under Gauss-Markov conditions, the ordinary least squares (OLS) estimator is the best linear unbiased estimator (BLUE).

A further generalization of the Gauss-Markov conditions to heteroscedastic and correlated errors was developed (Aitken, 1936),
and its application to the weighted least squares (WLS) estimator can be stated as follows:
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“WLS is the BLUE if the weight matrix is equal to the inverse of the variance-covariance matrix of the noises.”

Based on the generalized Gauss-Markov conditions, the subsolution in (9a) has the following properties:

E[∆x̂(i)]=0 (54a)

Var[∆x̂(i)]=S(i)W−1S(i)T . (54b)

Therefore, the expectation and variance of the Jackknife residual in Equation (14) are given by

E[ti]=0 (55a)

Var[ti]=gi Var
[
∆x(i) −∆x̂(i)

]
gT
i + σ2

i

=giS
(i)W−1S(i)T gT

i + σ2
i . (55b)

As shown in Equation (29), the Jackknife residual can be rewritten as

ti = p̃iε , (56)

which is a linear combination of measurement noises. If εi has a zero-mean Gaussian distribution defined in Equation (15), ti
will have a Gaussian distribution

ti ∼ N
(
0, p̃iW

−1p̃T
i

)
. (57)

Since a Gaussian distribution is uniquely defined by its mean and variance, the following equation will hold:

giS
(i)W−1S(i)T gT

i + σ2
i = p̃iW

−1p̃T
i . (58)

Therefore,
ti ∼ N

(
0,giS

(i)W−1S(i)T gT
i + σ2

i

)
. (59)

APPENDIX C. BONFERRONI CORRECTION
The hypotheses with Bonferroni correction (Bonferroni, 1936) in Equation (18) have the following relationship with the original
hypotheses in Equation (17):

H0=

n⋂
i=1

H
(i)
0

H1=

n⋃
i=1

H
(i)
1 .

(60)

Assume that the probability of type I error of the corrected hypothesis test is α∗. Then,

1− α∗=P (All tests accept|H0)

=1− P (At least one test is rejected|H0)

≥1−
n∑

i=1

P (Origin test i is rejected|H0)

=1−
n∑

i=1

P (Origin test i is rejected|H(i)
0 )

=1− nα .

(61)

In addition,
α∗=P (At least one test is rejected|H0)

≥P (Origin test i is rejected|H(i)
0 )

=α .

(62)
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Therefore,
α ≤ α∗ ≤ nα . (63)

To keep the type I error α∗ not exceeding τ (e.g., 0.05),

nα = τ . (64)

Thus, the type I error of the individual test would be α = τ
n .

APPENDIX D. DERIVATION IN THE EXTENDED JACKKNIFE RESIDUAL
Substitute Equation (8) and Equation (22) into Equation (24)

P̃=

H(i,∗)
1:i−1,:

gi

H
(i,∗)
i:n−1,:

[
S
(i,∗)
:,1:i−1 0 S

(i,∗)
:,i:n−1

]

=

H
(i,∗)
1:i−1,:S

(i,∗)
:,1:i−1 0 H

(i,∗)
1:i−1,:S

(i,∗)
:,i:n−1

giS
(i,∗)
:,1:i−1 0 giS

(i,∗)
:,i:n−1

H
(i,∗)
i:n−1,:S

(i,∗)
:,1:i−1 0 H

(i,∗)
i:n−1,:S

(i,∗)
:,i:n−1

 .

(65)

Then (
I− P̃

)
H̃(i) =

I−H
(i,∗)
1:i−1,:S

(i,∗)
:,1:i−1 0 −H

(i,∗)
1:i−1,:S

(i,∗)
:,i:n−1

−giS
(i,∗)
:,1:i−1 1 −giS

(i,∗)
:,i:n−1

−H
(i,∗)
i:n−1,:S

(i,∗)
:,1:i−1 0 I−H

(i,∗)
i:n−1,:S

(i,∗)
:,i:n−1


H(i,∗)

1:i−1,:

gi

H
(i,∗)
i:n−1,:

 . (66)

Based on the property of block matrix multiplication, it is equivalent to write Equation (66) as

(
I− P̃

)
H̃(i) =

I−H
(i,∗)
1:i−1,:S

(i,∗)
:,1:i−1 −H

(i,∗)
1:i−1,:S

(i,∗)
:,i:n−1 0

−giS
(i,∗)
:,1:i−1 −giS

(i,∗)
:,i:n−1 1

−H
(i,∗)
i:n−1,:S

(i,∗)
:,1:i−1 I−H

(i,∗)
i:n−1,:S

(i,∗)
:,i:n−1 0


H(i,∗)

1:i−1,:

H
(i,∗)
i:n−1,:

gi

 . (67)

By introducing a set of permutation matrix Pi,i+1,Pi+1,i+2, · · · ,Pn−1,n (Pi,j represents the permutation matrix to exchange
ith and jth row), the ith row of the first matrix on the right-hand-side of Equation (67) can be moved to the nth row, as shown
below,

(
I− P̃

)
H̃(i)=P−1

i,i+1P
−1
i+1,i+2 · · ·P

−1
n−1,n

I−H
(i,∗)
1:i−1,:S

(i,∗)
:,1:i−1 −H

(i,∗)
1:i−1,:S

(i,∗)
:,i:n−1 0

−H
(i,∗)
i:n−1,:S

(i,∗)
:,1:i−1 I−H

(i,∗)
i:n−1,:S

(i,∗)
:,i:n−1 0

−giS
(i,∗)
:,1:i−1 −giS

(i,∗)
:,i:n−1 1


H(i,∗)

1:i−1,:

H
(i,∗)
i:n−1,:

gi


=P−1

i,i+1P
−1
i+1,i+2 · · ·P

−1
n−1,n

[
I−H(i,∗)S(i,∗) 0

−giS
(i,∗) 1

] [
H(i,∗)

gi

]
=P−1

i,i+1P
−1
i+1,i+2 · · ·P

−1
n−1,n

[
H(i,∗) −H(i,∗)S(i,∗)H(i,∗)

−giS
(i,∗)H(i,∗) + gi

]
.

(68)

According to the definition of S(i,∗) in Equation (7), it is easily to found that

S(i,∗)H(i,∗) = I . (69)

Therefore, (
I− P̃

)
H̃(i) = 0 . (70)
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APPENDIX E. WEIGHTED SUM OF INDEPENDENT RANDOM VARIABLES
Let Yj = p̃i,jεj be an independent random variable. Equation (30) can be written as

ti =

n∑
j=1

Yj . (71)

Since the PDF of the sum of independent variables is the convolution of their PDFs, the PDF of ti can be written as

fti(x) = fY1
(x) ∗ fY2

(x) ∗ . . . ∗ fYn
(x) , (72)

where ∗ denotes the convolution operation. The CDF of Yj can be written as

FYj (y) = P (Yj < y) = P

(
εj <

y

|p̃i,j |

)
=

∫ y/|p̃i,j |

−∞
fεj (x)dx .

(73)

Let t = |p̃i,j |x, then

FYj (y) =
1

|p̃i,j |

∫ y

−∞
fεj

(
t

|p̃i,j |

)
dt . (74)

By taking the first derivative with respect to t, the PDF of Yj can be obtained as follows:

fYj
(x) =

1

|p̃i,j |
fεj

(
x

|p̃i,j |

)
. (75)

Therefore, Equation (72) can be written as,

fti(x) =

n∏
j=1

|p̃i,j |−1
fε1

(
x

|p̃i,1|

)
∗ fε2

(
x

|p̃i,2|

)
∗ . . . ∗ fεn

(
x

|p̃i,n|

)
. (76)

APPENDIX F. PRINCIPAL GAUSSIAN OVERBOUND
The construction of Principal Gaussian Overbound (PGO) mainly consists of the following three steps:

(1) Error fitting with zero-mean BGMM

Let the fitted zero-mean bimodal Gaussian mixture model (BGMM) for the error distribution be

f(x) = p1fN
(
x; 0, δ21

)
+ (1− p1) fN

(
x; 0, δ22

)
, (77)

where fN
(
x; 0, δ21

)
and fN

(
x; 0, δ22

)
are the PDF of the first and the second Gaussian component, δ1 and δ2 the corresponding

standard deviations, and p1 and 1− p1 are the mixing weight of the two Gaussian components, respectively.

(2) Dominance partition

The membership weights s1 and s2 of Equation (77) can be written as

s1(x) =
p1fN

(
x; 0, δ21

)
p1fN (x; 0, δ21) + (1− p1) fN (x; 0, δ22)

(78a)

s2(x) =
(1− p1) fN

(
x; 0, δ22

)
p1fN (x; 0, δ21) + (1− p1) fN (x; 0, δ22)

. (78b)

The membership weights indicate the posterior probability of a data point being generated from each component. It is proved
in Yan, Zhong, and Hsu (2024) that s1(x) is a symmetric concave function and s2(x) is a symmetric convex function. Figure
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7(a) shows an example plot of s1(x) and s2(x) for a zero-mean BGMM with p1 = 0.9, δ1 = 0.5, and δ2 = 1. It is shown that
s1(x) exhibits large values when x is situated at the core region of the BGMM. As x goes far away from the center, the value
diminishes rapidly. Conversely, s2(x) exhibits an opposite trend, with its highest value occurring in the tail region. These trends
illustrate the dominance of each Gaussian component in BGMM. Therefore, a partitioning strategy is constructed by solving
the equations as follows:

s2 (xlp) = α · lim
t→∞

s2(t) ∀xlp < 0 (79a)

s2 (xrp) = α · lim
t→∞

s2(t) ∀xrp > 0 , (79b)

where xlp and xrp are the core-tail transition points, x ∈ [xlp, xrp] defines the core region, x ∈ [−∞, xlp] ∪ [xrp,∞] defines
the tail region, and α ∈ (0.5, 1) is the partition parameter describing the degree of dominance of the 2nd Gaussian component
in the tail region.

With this partition, data points located in the tail region demonstrate a larger membership weight in the 2nd Gaussian component
compared to xlp or xrp. Notably, this value increases monotonically as the data point moves farther away from the center,
indicating the dominance of the 2nd Gaussian component in the tail region. However, in the core region, the situation becomes
complicated. The intersection points of s1(x) and s2(x) can be computed as follows:

xL
intersect = −

√
2δ21δ

2
2

δ22 − δ21
ln

p1δ2
(1− p1) δ1

(80a)

xR
intersect =

√
2δ21δ

2
2

δ22 − δ21
ln

p1δ2
(1− p1) δ1

. (80b)

The interval
[
xL

intersect, x
R
intersect

]
can be interpreted as the region that the 1st component has more contribution than the 2nd

component. When p1 goes larger, xR
intersect will increase; thereby, the length of the interval

[
xL

intersect, x
R
intersect

]
will be extended.

In other words, the probability of the 1st component’s dominance in the core region becomes larger. Then, it is reasonable
to assume that the core region is dominated by the 1st component. This assumption is rational in the context of heavy-tailed
distribution modeling, especially for pseudorange error modeling.
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Figure 7: (a) Membership weights of a zero-mean bimodal Gaussian mixture model with p1 = 0.9, δ1 = 0.5, and δ2 = 1. (b) PDF of the
Principal Gaussian overbound and the Gaussian overbound for the zero-mean bimodal Gaussian mixture model. xlp refers to xL

intersect, and xrp

refers to xR
intersect.

(3) Overbounding each region

Within each region, a CDF overbound is constructed based on the inflation and shifting of the dominant Gaussian component
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with the constraints of unimodality. The PDF of the finalized overbound distribution is given by (Yan, Zhong, & Hsu, 2024)

fPGO(x) =

{
(1 + k) (1− p1) fN

(
x; 0, δ22

)
|x| > xrp

p1fN
(
x; 0, δ21

)
+ c |x| ≤ xrp

, (81)

where

k =
p1G (xlp; 0, δ1)

(1− p1)G (xlp; 0, δ2)
, c =

(1− p1)
(
G (xlp; 0, δ2)− 0.5

)
xlp

. (82)

It is not difficult to find that k and c are solely determined by the partition parameter α. The PDF of the PGO for the zero-mean
BGMM (p1 = 0.9, δ1 = 0.5, δ2 = 1) is plotted in Figure 7(b), which is shown as a piece-wised function. The plot reveals that
the PDF of the PGO is closely aligned with those of BGMM in both the tail and core regions.

APPENDIX G. GAUSSIAN ERROR MODELS FOR WORLDWIDE SIMULATIONS
This paper uses the setting in Blanch et al. (2010) to set the Gaussian error models for the dual-frequency SPP. Specifically, the
error bound for the satellite clock and ephemeris error for the L1-L5 ionospheric free combination is set as

σL1-L5
eph&clk,i = 0.5m . (83)

The tropospheric error bound is assumed to be

σtrop,i = (0.12m)
( 1.001√

0.002001 + sin2 θi

)
. (84)

The code noise and multipath error bound for L1 frequency is given by(
σL1
cnmp,i

)2

=
(
σL1
noise,i

)2

+
(
σL1
multipath,i

)2

, (85)

where the code noise error bound is given by (Oehler et al., 2004)

σL1
noise,i = 0.04m− (0.02m)

θi − 5◦

85◦
, (86)

and the multipath error bound is defined for AAD-A aircraft, as shown in Rife, Pullen, Pervan, and Enge (2004)

σL1
multipath,i = 0.13m + (0.53m) exp

(
− θi

10◦

)
. (87)

The code noise and multipath error bound for L5 frequency is set to be the same as that of L1 frequency,

σL1
cnmp,i = σL5

cnmp,i . (88)
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APPENDIX H. RESULTS OF OVERBOUNDING CORS DGNSS ERRORS

Figure 8: The complementary cumulative distribution function (CCDF) of the Gaussian overbound and Principal Gaussian overbound for
DGNSS errors in each elevation angle bin. The CCDF is plotted in logarithm scale.
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APPENDIX I. RESULTS OF OVERBOUNDING CORRECTED PSEUDORANGE ERRORS AT CHTI STATION
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Figure 9: The CDF of the Gaussian overbound and Principal Gaussian overbound for corrected pseudorange errors in each elevation angle
bin. The CDF is plotted in logarithm scale.
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Figure 10: The complementary cumulative distribution function (CCDF) of the Gaussian overbound and Principal Gaussian overbound for
corrected pseudorange errors in each elevation angle bin. The CCDF is plotted in logarithm scale.


	Introduction
	Jackknife Test for Linear System
	Linearization of Pseudorange-based Positioning Systems
	Standard Jackknife Test Detector under Gaussian Noises
	Extend Jackknife Test Detector to Non-Gaussian Noises

	Overbounding Non-Gaussian Noises
	Gaussian overbound
	Principal Gaussian overbound

	Detection Performance with Worldwide Simulations
	Simulation with Gaussian Distributed Measurement Errors
	Simulation with NIG Distributed Measurement Errors

	Detection Performance for CORS DGNSS Positioning
	Data Prepossessing and Overbounding
	Detection Performance with Artificially Injected Bias

	Application to Real-world Satellite Clock Anomaly Detetion
	Conclusions and future work
	Linearization for SPP and DGNSS Positioning Systems
	Single Point Positioning (SPP)
	Differential Global Navigation Satellite System (DGNSS) Positioning

	Distribution of Jackknife Residual under Gaussian Noises
	Bonferroni Correction
	Derivation in the Extended Jackknife Residual
	Weighted Sum of Independent Random Variables
	Principal Gaussian Overbound
	Gaussian Error Models for Worldwide Simulations
	Results of overbounding CORS DGNSS errors
	Results of overbounding corrected pseudorange errors at CHTI station

